MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

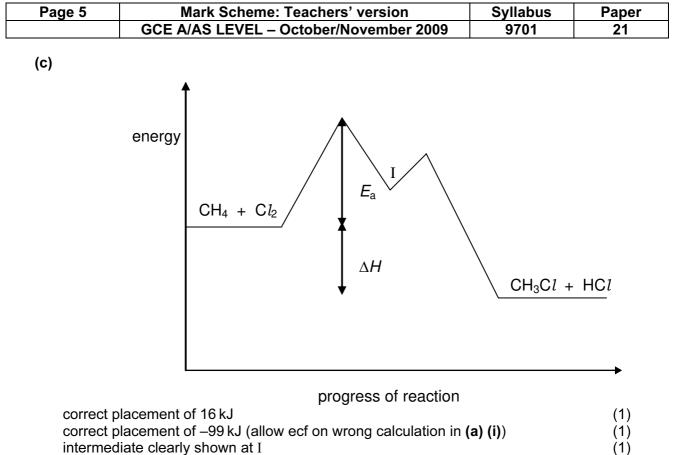
9701/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2				ark Schem	Syllabus	Paper	,			
				GCE A/	AS LEVEL ·	– Octobei	r/Novembe	9701	21		
1	(a)				r/atomic nur per/nucleon			(1) (1)	[2]		
	(b)	$A_{\rm r}$	= (2	4×78.60)+	(25×10.11) 100		(1)				
			= 18	386.4 + 252. 100	75 + 293.54 0						
				ves A _r = 24 (–1) for mis	1.33 suse of signi		(1)	[2]			
	(c)								1		
					isotopes		number o	f			
						protons	neutrons	electrons			
					²²⁶ Ra	88	138	88			
					²³⁸ U	92	146	92			
			if the	ere are no c	for each co orrect colun 1 one mark			(3 × 1)	[3]		
	(d)	(i)	Ra²⁺	-						(1)	
		(ii)	less allov	than (502 + v answers ir	· 966) n the range	1000–140	10 kJ mol ⁻¹			(1)	
			ionis or or		(1)						
				v ecf on ans	reased shiel swer to (i)			(1)	[3]		
			2.101							[Total:	
										Liotan	. • 1

Page 3			}	Mark Scheme: Teachers' version	Syllabus	Paper	•
				GCE A/AS LEVEL – October/November 2009	9701	21	
2	(a)	(i)		uration ends in s ² e are two electrons in outermost/valence shell		(1)	
		(ii)	RaCO ₃	/radium carbonate		(1)	[2]
	(b)	anc catl	ode hode	$Br^- \rightarrow \frac{1}{2}Br_2 + e^-$ $Ra^{2^+} + 2e^- \rightarrow Ra$		(1) (1)	[2]
	(c)	(i)	water	slow reaction gas bubbles gas is colourless		any 2 (2)	
			steam	Mg glows vigorous reaction white solid formed		any 2 (2)	
		(ii)	Mg + H	$H_2O \rightarrow MgO + H_2$		(1)	[5]
	(d)	(i)	Ra(s) +	+ 2H ₂ O(I) \rightarrow Ra(OH) ₂ (aq) + H ₂ (g)		eqn. (1) s.s. (1)	
		(ii)	gas eve				
			gas is o heat ev	colourless volved		any 2 (2)	
		(iii)	10–14			(1)	
		(iv)	becaus	no mark for this alone se reactivity of metals increases down the Group strons are further from nucleus s lower			
				s a stronger reducing agent		(1)	[6]
						[Total:	: 15]

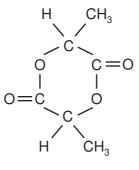
	Page	4		Μ	ark	Sche	ne: Te	ach	ners'	vers	ioi	n	Syllab	us	Pap	ber	
			GC	CE A/	AS I	LEVE	L – Oci	tob	er/No	ven	ıbe	er 2009	970 ⁻		2 ⁻	1	
3	(a) (i)			H₄ 75		C <i>l</i> 2 0	\rightarrow		l₃C <i>1</i> 82			IC <i>1</i> -92			(1)	
		ΔH^{e} re	action	= -8 = -9	2 + (9 kJ	(–92) - mol ^{–1}	- (–75)								(1)	
	(ii)	broke	en C	CH₄ C–H 410		I ₂ I–I 151	→ made		CH₃I C–I 240	-	ł	HI H–I 299			(1)	
		ΔH^{e} re	action	= -2 = +2	40 + 2 kJ	· (–299 mol ^{–1}	9) + 41	0 +	151						(1)	
	(iii)	activa	ation	energ	gy is	too gi	reat								(1)	[5]
	(b) (i)	initiat Cl₂ + propa	uvl -		C1										(1 (1 (1)	
		CH ₄ - CH ₃ -			-	HC1 21 + C	ļ						b	oth ne	eded (1)	
		termi	natio	n											(1)	
		CH ₃ - CH ₃ -		-	-	-											
		Cl+($Cl \rightarrow$	Cl ₂											(1)	
	(ii)) CH₃/r	nethy	/I rad	ical										(1)	[7]

intermediate clearly shown at I correct 'double peak' shape

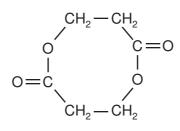
second peak lower than first

[Total: max 16]

(1)


(1)

[5]


4 (a) (i) C_2H_5O ((ii) OH \downarrow (iii) $\boxed{Compound type of isomerism}}$ $\boxed{A cis-trans or geometrical}}$ \boxed{D} optical allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination (ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/purnice etc.$ (iii) $CH_2=CHCH=CH_2/butadiene/buta-1,3-diene$ (c) (i) $CH_3CH_2CH(OH)CH_3$ (ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^*$ (d) functional group isomerism or structural isomerism	6	Page 6	Ма	Syllabus	Paper			
(ii) $\stackrel{OH}{\longleftarrow}$ ((iii) $\stackrel{iii}{\frown}$ $\stackrel{compound}{\frown}$ type of isomerism isometrical \bigcirc $\stackrel{O}{\frown}$ optical \bigcirc allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination (1) conc. H ₂ SO ₄ /P ₄ O ₁₀ /Al ₂ O ₃ /pumice etc. (2) (ii) cH ₂ =CHCH=CH ₂ /butadiene/buta-1,3-diene (2) (ii) cH ₃ CH ₂ CH(OH)CH ₃ (2) (ii) steam with H ₃ PO ₄ catalyst or conc. H ₂ SO ₄ then water (1 + (iii) Cr ₂ O ₇ ²⁻ /H ⁺ (2) (ii) functional group isometrism or structural isometrism			GCE A/A	<u> IEVEL – Oc</u>	tober/November 2009	9701	21	
(iii) $ \frac{compound type of isomerism}{A cis-trans or geometrical} D optical $ allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination (ii) conc. H ₂ SO ₄ /P ₄ O ₁₀ /A <i>l</i> ₂ O ₃ /pumice etc. (iii) CH ₂ =CHCH=CH ₂ /butadiene/buta-1,3-diene (c) (i) CH ₃ CH ₂ CH(OH)CH ₃ (ii) steam with H ₃ PO ₄ catalyst or conc. H ₂ SO ₄ then water (1 + (iii) Cr ₂ O ₇ ²⁻ /H ⁺ (i) functional group isomerism or structural isomerism							(1)	
compound type of isomerism A cis-trans or geometrical D optical allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination (ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. (1 (iii) CH_2=CHCH=CH_2/butadiene/buta-1,3-diene (1 (c) (i) CH_3CH_2CH(OH)CH_3 (1 (iii) steam with H_3PO_4 catalyst or conc. H_2SO_4 (1 + water (iii) Cr_2O_7^2-/H^+ (2 (d) functional group isomerism or structural isomerism (1	/	()	\searrow				(1)	
A cis-trans or geometrical D optical allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination ((ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. ((iii) CH_2=CHCH=CH_2/butadiene/buta-1,3-diene ((c) (i) CH_3CH_2CH(OH)CH_3 ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 (1 + (iii) Cr_2O_7^2-/H^* ((d) functional group isomerism or structural isomerism ()	(iii)	Г			7		
D optical allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination ((ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. ((iii) CH_2=CHCH=CH_2/butadiene/buta-1,3-diene ((c) (i) CH_3CH_2CH(OH)CH_3 ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 (1 + (iii) Cr_2O_7^{2-}/H^* ((d) functional group isomerism or structural isomerism (-	compound	type of isomerism	_		
allow one mark if both A and D are correctly identified but in both cases, the type of isomerism is incorrect $(1 + (b) (i) dehydration/elimination ((ii) conc. H_2SO_4/P_4O_{10}/Al_2O_3/pumice etc. ((iii) CH_2=CHCH=CH_2/butadiene/buta-1,3-diene ((iii) CH_2=CHCH=CH_2/butadiene/buta-1,3-diene ((iii) Steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) Cr_2O_7^{2-}/H^+ ((iii) Cr_2O_7^{2-}/H^+ ((ii) Cr_2O_$				Α	<i>cis-trans</i> or geometrical			
but in both cases, the type of isomerism is incorrect (1 + (b) (i) dehydration/elimination (ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. (iii) $CH_2=CHCH=CH_2/butadiene/buta-1,3-diene$ (c) (i) $CH_3CH_2CH(OH)CH_3$ (i) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ (d) functional group isomerism or structural isomerism			-	D	optical			
(iii) $CH_2=CHCH=CH_2$ /butadiene/buta-1,3-diene ((c) (i) $CH_3CH_2CH(OH)CH_3$ ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism) de	b) (i)	dehydration/elim	ination			(1)	
(ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. ((iii) $CH_2=CHCH=CH_2/butadiene/buta-1,3-diene$ ((c) (i) $CH_3CH_2CH(OH)CH_3$ ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism							(1 + 1)	[
(iii) $CH_2=CHCH=CH_2$ /butadiene/buta-1,3-diene ((c) (i) $CH_3CH_2CH(OH)CH_3$ ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism) de	b) (i)	dehydration/elim	ination			(1)	
(c) (i) $CH_3CH_2CH(OH)CH_3$ ((ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism) со	(ii)	conc. H_2SO_4/P_4C	0 ₁₀ /Al ₂ O ₃ /pumice	e etc.		(1)	
(ii) steam with H_3PO_4 catalyst or conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism) C	(iii)	CH ₂ =CHCH=CH	2/butadiene/buta	a-1,3-diene		(1)	[
conc. H_2SO_4 then water (1 + (iii) $Cr_2O_7^{2-}/H^+$ ((d) functional group isomerism or structural isomerism) C	c) (i)	CH ₃ CH ₂ CH(OH)	CH₃			(1)	
(d) functional group isomerismor structural isomerism					talyst or		(1 + 1)	
or structural isomerism) C	(iii)	$Cr_2O_7^{2-}/H^+$				(1)	[
or structural isomerism	inctio	d) func	tional group isom	nerism				
	r stru	or s	tructural isomeris	m			(1)	
	er pe						[Total:	

	Page 7	7	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE A/AS LEVEL – October/November 2009	9701	21	
5	(a) G i	s HCŀ	IO/methanal		(1)	[1]
	(b) (i)	carb not a	oxylic acid/carboxyl/–CO₂H acid		(1)	
	(ii)	H is	CH ₃ CO ₂ H/ethanoic acid		(1)	
	(iii)		$CH_3CH(OH)CO_2H/2$ -hydroxypropanoic acid v HOCH_2CH_2CO_2H/3-hydroxypropanoic acid		(1)	[3]
	(c) K is	s CH ₃	COCO ₂ H		(1)	[1]

(d) (i) L is

allow as ecf on HOCH₂CH₂CO₂H/3-hydroxypropanoic acid

(1)

(ii) esterification allow elimination/dehydration/condensation (1) [2]

[Total: 7]